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Foundation Models - In recent years, deep learning has shifted towards
a paradigm where practitioners will download large models that have
been pretrained on massive, diverse data. Once downloaded, these
models will usually be “fine-tuned” on a specific dataset and task.

Distribution Shifts - Machine learning models perform well in their
training distribution, but often fail catastrophically when exposed to
inputs that are slightly different in nature. In order to promote the safe
adoption of Al, it is important that ML systems work in a variety of
realistic scenarios that they may encounter in the real world.

Fine-Tuning vs Linear Probing - The two most common ways of
adapting a pretrained model to a downstream task is fine-tuning, where
all of the parameters are re-trained on the new data, and linear probing,
where only the parameters in the last layer are updated. Prior work has
shown that while fine-tuning works best in-distribution, it is less robust
than linear probing and can distort pretrained features.
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Approach: The eNTK

The Neural Tangent Kernel (NTK) - The neural tangent kernel is found
by taking the first-order Taylor expansion of a neural network with

respect to its parameters. Concretely, the NTK is simply the Jacobian of
the network—a matrix containing the partial derivatives of the network’s
outputs with respect to each of its parameters. In the theory of deep
learning, it is possible to prove many theoretical results about neural
networks using the NTK, though these often rely on several unrealistic
assumptions.
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The Empirical NTK (eNTK) - Putting its theoretical use aside, it is possible
to linearize neural networks in practice by computing their NTK’s, which
is in this setting called the empirical neural tangent kernel (eNTK). In order
to do this efficiently, we make several approximations. First, because we
start with a pretrained model whose last layer will be randomly initialized,
we reduce the network to only one output dimension. This reduces the
Jacobian to simply the gradient with respect to this single output.
Intuitively, this approximation holds because the randomly initialized
output layer doesn’t contain any information to distinguish one output
from any other.

The second approximation we make is to subsample 500,000 parameters
of the network and to only compute derivatives with respect to those.
Preliminary experiments suggest that this approximation is valid as there
is little gains to be had by improving the parameter dimension beyond
500,000. For all of our experiments conducted so far, we have used a pre-
trained ResNet-50 as our network, meaning our sample of 500,000
represents about 2% of the networks ~23,000,000 total parameters. In
the future, we hope to conduct further testing on how this scales to larger
pre-trained models, including those that are popular in NLP.
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Once we obtain the 500,000-dimensional NTK representations for a
given dataset, we compute the NTK matrix given by the data matrix’s inner
product. This gives us a nxn kernel matrix, where n is the size of the
dataset. From there, we employ the kernel trick to solve for the
parameters in linear regression. We solve this convex problem using the
following update rule (derived below), inserting it into Nestorov's
Accelerate Gradient to speed up convergence.
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We report results for both early stopping on the in-distribution validation
set and for running gradient descent until convergence. We conduct a

telescopic search over L2 regularization strengths, finding that results are
relatively robust to the level of reqularization.

So far, we obtained results for Living-17, which is a distribution
shift benchmark sampled from ImageNet. We compare our
eNTK results to those reported in [1] and find that the eNTK is
better both in- and out-of-distribution compared to traditional
fine-tuning.

Living-17 ID 00D
Scratch 92.4% 58.2%
Linear Probing 96.5% 82.2%
Fine-Tuning 97.1% 77.7%
eNTK (early stopping) 97.4% 81.2%
eNTK (converged) 97.1% 81.3%

In- and out-of-distribution accuracy during training and across
different reqularization strengths

Ongoing and Future Work

We’'re currently working on getting results for other datasets and
models, both in vision and NLP. Moreover, several ablation studies
ought to be performed, investigating different approximations,
sampling strategies, and theoretical hypotheses, such as how the
eNTK performs specifically on data outside the span of the training
data.
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